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Abstract

We describe the development and optimization of a new gravity solver. This technique

solves the gravitational Poisson equation for the gravitational potential on a large uniform grid

using a red-black relaxation technique, accelerated by a multigrid approach. This approach

arrives at a solution in O(N). We further explore how this can be implemented on parallel

computing platforms, as well as how it can be optimized for modern computing. Specifically,

we optimize our algorithm for a 16-wide SIMD engine. We also discuss pitfalls of the algo-

rithm, room for improvement, and next steps for further development of this algorithm. The

eventual goal of this project is to adapt the algorithm for 3 dimensions for use in simulations

of gravitating gaseous disks, such as might be found in spiral galaxies or protoplanetary disks.

1



Introduction

For decades, researchers have used computers to try to solve problems of immense difficulty and

complexity that would take humans millions of years or more to solve. Even a personal computer

is capable of performing in a few seconds a number of calculations that could take a human years to

solve. Modern supercomputers are able to take advantage of a large number of processors running

in parallel, along with the latest advances in processor design, to do even more, often performing

in a matter of hours a number of calculations that would take a personal computer years, and a

human eons.

One such problem is that of gravitating groups of bodies. At large scales, our universe is largely

governed by gravity–it is believed to be the dominant force that causes clumps of dust and gas to

coalesce into planets, stars, solar systems, galaxies, and all the way up to the superstructure of the

universe. If we are to understand how it is that these bodies form, we must be able to paint a picture

of that formation. Doing this requires determining the gravitational force exerted on each particle.

For a large system on the scale of cosmological features such as protoplanetary disks or galaxies,

this is impractical, as the sheer number of particles in something like the Milky Way is likely even

greater than 1060–simulating each and every particle on current computers would take uncountable

lifetimes of the universe.1 Even a computer capable of performing 1015 computations per second

could only perform on the order of 1032 computations in the 14 billion years the universe has

existed. Therefore, simulating large gravitating bodies is a game of approximations.

One of the most common ways to reduce the size and complexity of the problem is to approx-

imate many small particles as one larger particle. This is called an N-Body simulation. In such

a simulation, a galaxy the size of the Milky Way represented by trillions of particles is still made

up of individual particles with masses several hundred times that of the Sun. A simulation of a

newborn solar system involving trillions of particles and mass comparable to our own will be com-

prised of particles with individual masses on the order of large asteroids. Since the gravitational

behavior of a concentrated mass differs greatly from that of a diffuse mass of gas and dust, these

simulations must use various tricks to approximate the behavior of the nearly-continuous distribu-
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tion they are modeling. This makes creating accurate simulations notoriously difficult–the success

of the simulation depends on not only assuming the correct initial conditions and the correct im-

plementation of other physical laws, but also on emergent phenomena being due to the physics

of the system itself, rather than being artifacts of the various corrections and adjustments made to

attempt to make a concentrated nearly-point mass behave like a diffuse mass of gas and dust. A

further constraint on N-Body simulations is the speed at which the simulations can be performed.

Solving for the gravity of a distribution of N bodies can be done in O(N2) in the worst case,2

though modern simulations typically accomplish it in O(N logN) or better.3;4

An alternative approach to modelling large systems of gas and dust involves treating the sys-

tem as a continuous fluid distribution–rather than being represented as discrete point masses, each

differential area of the grid is assigned a density. Thus, the system can be modeled using hydrody-

namic equations, and any gravity solver needs only concern itself with solving for the gravitational

potential of each cell in the grid, rather than individual particles. As long as energy, momentum,

and mass are conserved, modeling the average density and average gravitational potential of a cell

is all that is needed–achieving the desired resolution then simply becomes a matter of using a grid

with sufficiently small cells or utilizing a sufficiently accurate interpolation algorithm. This does

assume that the gravitational potential is smooth. However, gravity obeys a Poisson equation,5

such that

∇2φ = 4πGρ (1)

where φ is the potential at the given point, G is the gravitational constant, and ρ is the density at

the given point. Thus, since the second derivatives of the potential must exist and must be real,

it’s a fairly good assumption that the potential is smooth. In fact, this is a problem that N-Body

simulations must deal with–discrete point masses represent gravitational singularities that must be

”softened” to maintain accuracy.

Solving the gravitational Poisson equation for a continuous distribution of gas and dust has

many advantages, beyond the simple fact that a continuous fluid is qualitatively more similar to

a continous distribution of gas and dust than is a distribution of massive discrete particles. Many

3



other Poisson-like equations are often solved for fluids, such as the Dirichlet equation for temper-

ature,6

∇2T = 0

where T is the temperature, or the Poisson equation for the scalar electric potential,7 given by

∇2ϕ =
−ρ
ε

where ϕ is the scalar potential, ρ is the charge density, and ε is a permittivity constant. This means

that researchers have been investigating ways to efficiently solve these types of equations for years.

One such scheme is called a red-black relaxation algorithm. This algorithm divides the grid into

a checkerboard to perform half as many computations to reach the same level of iteration.8 When

accelerated with a multigrid component, wherein the residual error for a solution to the grid is

itself relaxed on a coarser grid into a correction factor and then applied to the original fine grid,9

this scheme can solve Poisson equations in O(N).8

Red-Black Relaxation

The checkerboard pattern of the red-black relaxation algorithm can be understood as being an

intrinsic property of Poisson equations. Eq. 1 can be rewritten as

(
∂2

∂x2
+

∂2

∂y2

)
φ = 4πGρ (2)

We omit cross-terms such as ∂2φ/∂x∂y because gravitational force can be represented by orthog-

onal components, so we do not expect the potential to have any cross-axis dependence. At the

long-time limit, or the limit in which the solution has relaxed and converged and, barring distur-

bance of the system, φ is constant, we can approximate ∂2φ
∂x2

as

∂2φ

∂x2
=

1

∆x2
(〈φ〉R − 〈φ〉+ 〈φ〉L − 〈φ〉) (3)
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where we understand ∆x2 to be suitably small, and we assume ∆x to be the width of a grid cell in

both the x and y axes.8 〈φ〉R and 〈φ〉L are the average potential values in the cells to the right and

left respectively of the current cell being solved, represented as 〈φ〉. Thus, we can express∇2φ as

(
∂2

∂x2
+

∂2

∂y2

)
φ =

1

∆x2
(〈φ〉R + 〈φ〉L + 〈φ〉U + 〈φ〉D − 4〈φ〉) (4)

where, as before, 〈φ〉U and 〈φ〉D are the average potential values in the cells above and below the

current cell. Therefore, taking Eq. 2, we can express the average potential within the current cell

as

〈φ〉 =
1

4
(〈φ〉R + 〈φ〉L + 〈φ〉U + 〈φ〉D)− πGρ∆x2 (5)

where ρ is the average density within the cell. Eq. 5 forms the basis for the red-black algorithm.

The solution to 〈φ〉 for a given cell depends only the cells to the North, South, East, and West–there

is no dependence on the 4 cells diagonally adjacent to it. This means that on a grid laid out like a

checkerboard, with red and black cells, each red cell depends only on black cells, and vice versa.

Figure 1: In a red-black relaxation algorithm, at each iteration level the cells of the previous level
are leapfrogged by the other cells, resulting in alternating levels of red and black. In this way, a
given iteration level n can be reached in half the work that would be required if the entire grid were
computed for each iteration level.

Therefore, if we consider each iteration to represent a certain depth towards a solution, then

reaching iteration level 1 only requires that we compute half the cells in the grid.6 We can then use

5



those cells to compute the other half, which will then be at iteration level 2. In the same number

of computations that would have been necessary to compute the entire grid to iteration level 1, we

have reached iteration level 2. Thus, the red-black technique allows us to alternate between red

and black relaxations, with the red and black cells leapfrogging each other, as shown in Fig. 1. We

are able to reach iteration level n in half the work normally required. Each iteration requires only

one computation per cell, meaning the work required to solve the grid scales with N , the number

of cells in the grid.8

Figure 2: Since diagonally-adjacent red cells share two of their neighbors, the computation for 〈φ〉
can be split up into a sum of two other sums of adjacent neighbors, as ((〈φ〉L + 〈φ〉U) + (〈φ〉D +
〈φ〉R)). This way, each pair-sum only has to be computed once, and can be reused for the other
cell that depends on it.

We can also save some work by noting that diagonally adjacent red cells share two black

neighbors, as shown in Fig. 2. This can be leveraged by rewriting Eq. 5 as a sum of two pair-

sums:

〈φ〉 =
1

4

[
(〈φ〉L + 〈φ〉U) + (〈φ〉D + 〈φ〉R)

]
− πGρ∆x2 (6)

Thus, each of the two pair-sums can be computed once, and then reused for a second cell.10 For

example, the pair-sum (〈φ〉L + 〈φ〉U) is also used for the cell’s Northwest red neighbor. This

allows for a further reduction in the number of computations necessary for each iteration. This

illustrates some of the main benefits of the red-black technique–its inherent structure exposes sev-
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eral redundancies that are easy to optimize, and it presents many opportunities for vectorization

and parallelization.6

Multigrid Acceleration

The red-black relaxation technique detailed above can work fairly well for arriving at a solution, but

it does suffer from the drawback that since at any given point, each cell’s value depends only on the

value of its neighbors, information only travels one cell per iteration.9 On a large grid, this means

that arriving at a relaxed, convergent solution can take a great deal of iterations, pushing the number

of computations required to reach a solution from O(N) to O(N3/2). It is, however, possible to

accelerate that information transfer by utilizing a multigrid technique, wherein several different

grids of coarser resolutions are used to compute correction factors to wipe out low-frequency errors

in the grid.9

To compute these correction factors, we first need to know how far from the solution each point

is. To determine this error, we define a residual for each cell such that11

〈R〉 = (〈φ〉R + 〈φ〉L + 〈φ〉U + 〈φ〉D)− 4πGρ∆x2 − 4〈φ〉 (7)

Thus, the residual is simply proportional to the difference between the value of the cell and what

the value would be if the cell satisfied the Poisson equation. If the equation is satisfied, the residual

is 0. One can then coarsen this residual. This residual then takes on the role of the source term in

a new relaxation scheme, given by

〈C〉 =
1

4
(〈C〉R + 〈C〉L + 〈C〉U + 〈C〉D)− 1

4
〈R〉 (8)

where 〈C〉 is a scalar correction factor. When 〈C〉 is relaxed in the same way that 〈φ〉 is relaxed,

then 〈C〉 can be used as a correction factor for 〈φ〉. Once 〈C〉 is interpolated down to the resolution
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of the fine grid, it can simply be subtracted from 〈φ〉, such that

〈φ− C〉 =
1

4
(〈φ− C〉R + 〈φ− C〉L + 〈φ− C〉U + 〈φ− C〉D)− πGρ∆x2 (9)

Note then that 〈φ − C〉 is a solution to the gravitational Poisson equation.11 Furthermore, since

the correction factor C is computed on a coarser grid than the original fine grid, not only does it

require fewer computations, but due to the larger grid cells, information travels farther across the

grid with the same number of iterations.9 If the coarse correction is not relaxed fully, a residual

can be computed for the coarse grid in the same manner as for a fine grid. This residual can then

be coarsened even further, and a correction to the correction computed on a grid now 16 times

smaller than the original fine grid. Thus, in order to arrive at a suitable solution on the fine grid,

an algorithm may move up and down through the grid levels, relaxing solutions through red-black

techniques, applying corrections, relaxing the solutions a bit closer to the solution, computing new

residuals, and so on. This can greatly accelerate the process of finding a solution to the Poisson

equation, allowing for solutions to be found withO(N) computations.9 The time it takes to perform

those computations can be reduced significantly by taking advantage of parallel processing and

memory-optimized data management.

Parallelization and Optimization

While in theory, this red-black multigrid approach seems like it would be an incredibly fast and

efficient algorithm for computing the gravitational potential on a uniform grid, when it comes to

performing the algorithm on a parallel supercomputing architecture there are many aspects that

conspire to complicate the implementation of an efficient red-black multigrid algorithm. These

include obstacles involving efficient use of the SIMD engine, taking advantage of cache sizes on

chips and the sizes of cache lines that the computer uses when reading memory, accomodating

multiple threads working on the same problem, and avoiding data unalignments.10

The SIMD engine of a processor is a mechanism by which the processor is able to take a set
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of similar instructions, or an instruction that needs to be performed many times on a chunk of

data, and perform a certain number of those instructions simultaneously.12 It is the equivalent of

being presented with two apples, each of which needs to go into its own bucket, where the two

buckets are nearly identical and are arranged next to each other. A human with two hands is able

to pick up both apples and place each in its bucket simultaneously. A SIMD engine is capable of

the same thing, but often rather than doing 2 things at once, it can perform 4, 8, 16, or even 32

operations at once. In order to take advantage of this feature, algorithms must be written in such

a way that allows the processor to interpret the maximum number of sets of commands as vector

operations that could be performed by the SIMD engine. When working with something like a

two-dimensional grid, this can affect how much of the grid is processed at once. SIMD engines

have limitations, such as an inability to vectorize exceedingly complex instructions. As such, it is

in the programmer’s interest to keep instruction sets as linear as possible.

Figure 3: When computing the pair-sums, one would like to avoid cases where cell (i,*) is being
added to cell (i+1,*). However, taking a square section of the checkerboard, at least half the pair-
sums will involve such a summation. Furthermore, because pair-sums are shared, as shown in
Fig. 2, many relaxation computations will involve unaligned data and indexing that does not allow
for SIMD optimization, as one pair-sum may be added to another pair-sum separated from it in
memory by more than a cache line, requiring a second fetch.
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It’s also important to avoid issues with data alignment. This issue primarily arises with the

use of pair-sums. Unaligned data can mean that the compiler won’t recognize the operation as

vectorizable, or it can mean that in order to satisfy the requirements of the operation, the processor

will have retrieve an additional cache line of data just to provide one more cell.13 Making an

additional access to memory can be extremely costly, as a memory access is orders of magnitude

slower than addition or multiplication.10 Fig. 3 shows numbered black cells on a grid. Data is

unaligned when a cell (i,*) must be compared to a cell (i+1,*). This may be a problem for the

SIMD engine for the computation of the pair-sums themselves, but when it comes time to add the

pair-sums and compute the actual relaxation, some pair-sums may be added to other pair-sums

separated in memory by more than a cache line. The natural configuration for a section of grid to

be computed is a square or rectangle, as data is organized in columns and rows, but this particular

cut of a checkerboard pattern means there will be a great deal of data unalignment. There are

various tricks one can employ to attempt to reduce the number of data unalignments, but in this

configuration, it is impossible to fully avoid data unalignment.10 One way that could avoid this

problem would be to rearrange the necessary cells and pair-sums into linear arrays that have been

pre-shuffled to allow the thread to perform all the necessary computations, but without any data

unalignment. However, the thread would quickly run out of operations to perform before needing

to fetch new data from memory. The effect would be that rather than zooming down the linearized

array of data, the thread would start and stop, spending most of its time stopped, waiting for new

data.10

One would also like to allow multiple threads to work on the grid at the same time. If one

thread can accomplish it decently quickly, then several threads can do it even faster. However, this

requires that the grid be split up into segments for each thread to work on. This poses a problem,

because a red-black algorithm cannot compute many iterations near a boundary. After the second

iteration, the first row in from a boundary must be considered corrupted, because it will now consist

of a relaxation that mixed cells at iteration level 1 from inside the grid with boundary cells, who

have not been changed, and thus are still at iteration level 0. For a datapoint to be uncorrupted,
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all progenitor cells must be at the same iteration level. And furthermore, on the third iteration, the

second row in has been corrupted, as now the cells in the second row have been produced with

corrupt data values. So with each iteration, the point at which data can be trusted moves farther

inward.6

With one thread, this isn’t necessarily a problem–one starts with a larger grid than is necessary

and throws away the corrupted edges at the end. However, if multiple threads are working on

the problem, and the grid is split into sections, there needs to be a way to ensure continuous

information transfer at the boundaries of each section to avoid the formation of visible seams.

One way to do this is for each thread to frequently communicate to neighboring threads what its

edge values are. Each thread can then use the edge information it receives from other threads to

compute relaxations along the relevant boundaries. However, this requires stopping frequently to

pass messages, which can be time-consuming and costly.10 A faster approach would be to allow

threads to overlap their sections of the grid, such that the innermost uncorrupted cells computed

by one thread coincide with the first row of corrupted cells computed by the neighboring thread.

This would allow a thread to proceed down the grid, performing several iterations, without ever

having to wait for a neighboring thread. However, this increases the amount of redundant work

being done.

Furthermore, allowing overlap can cause problems in conjunction with accomodations made

for the SIMD engine. A natural way to accomodate the SIMD engine is to work with a ”briquette”

of data, representing a square chunk of the grid whose dimensions are the width of the SIMD

engine.10 For a 4-wide SIMD engine, this would imply a 4-by-4 square. For a 16-wide engine,

this would imply a 16-by-16 square. This way, the SIMD engine can compute entire columns of

the briquette at once. However, if threads are allowed to overlap, then rather than repeating on the

basis of a multiple of 2, such as one thread every 16 cells, or every 8 cells, etc,threads will repeat

on a basis that is not easily divisible by powers of 2, nor will it easily go into a power of 2. For

example, if a simulation uses a 16-wide SIMD engine, and loses 2 cells at each boundary, then to

avoid seams, the next thread over will have to be offset from the first not by 16 cells, but by 14
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cells. 14 factors into 2 and 7–while the 2 can go into other factors of 2, that 7 will never divide

cleanly. The exact periodicity of a simulation’s sweeps depends on the width of the SIMD engine

(and thus the grid chunk being operated on), the size of the grid, and the degree of overlap between

threads. This poses problems for ensuring that the entire grid is covered, as the programmer must

ensure that enough sweeps are performed on all grid resolutions involved in the algorithm.

Paradoxically, working in the context of a fixed-size briquette sized for optimal SIMD vector-

ization and memory use can also reduce the efficiency of the SIMD engine. The SIMD engine

will always proceed at the same speed, regardless of it’s doing the maximum number of things

possible. So if a 16-wide SIMD engine is given 15 things to do, it will only do 15 things in the

same amount of time that it could have done 16–such a usage represents an inefficiency.13 Working

with a briquette with the same dimensions as the SIMD engine, all of the SIMD engine’s regis-

ters will be used to assemble the briquette and compute the first set of pair-sums. However, the

first relaxation operation will necessarily have fewer operations in each column than the pair-sum

operation. Assuming the fast-running index traverses the columns of the briquette, and thus the

SIMD engine computes entire columns at a time, each cycle of the SIMD engine will perform less

than the maximum number of operations. And the same will be true for the next set of pair-sums,

which only depend on the cells that were just relaxed, and even fewer operations for the next set

of relaxations, etc–for much of the algorithm executed for each briquette, the full width of the

SIMD processor is not in use. This could be addressed by arranging the data into linearized arrays,

as discussed earlier, but even if the problem of memory fetching were avoided, there would still

be a rearrangement cost to put the data in those arrays that would outweigh the loss of potential

efficiency in the usage of the SIMD engine.10 Therefore, a fast red-black multigrid algorithm will

need to find a way to deal with these obstacles.
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Implementation

For our implementation, we anticipate an architecture that uses a 16-wide SIMD engine.10 Thus,

the natural dimension for our briquette is 16 cells. However, we wish to avoid the various issues

detailed above. In particular, we wish to address the data alignment problems and non-uniformity

that arises from horizontal and vertical cuts, as shown in Fig. 3. One of the pecularities of a

checkerboard pattern is that there is a strong diagonal bias–a checkerboard is essentially two grids,

one red and one black, which have been rotated 45◦ and overlaid on top of each other, and then

cropped to fit in a smaller grid in the original coordinate system. This diagonal bias is further

evident in Fig. 2–all the pair-sums are diagonally oriented, as are the relaxation computations.

Therefore, we will use a briquette that is also diagonally oriented, as shown in Fig. 4.

Figure 4: We use a briquette pattern oriented along a rotated coordinate system, as indicated by
the cell indexing in the figure. Black dots correspond to vertical pair-sums of black cells, and red
dots correspond to vertical pair-sums of red cells. The red lines indicate that relaxations involve
summing horizontally-adjacent pair-sums. This scheme ensures proper data alignment, as all pair-
sums are confined within their column, and all relaxations involve summing pair-sums indexed
with identical (i,*) patterns.
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Using a diagonal briquette eliminates the issue of data alignment. To perform the pair-summations,

only cells within the same column are added–the operation involves adding cells (i,a) and (i+1,a),

where a is the column number, and i is along the fast-running index. The relaxations themselves in-

volve adding horizontally adjacent pair-sums–the operation involves adding sums (b,i) and (b,i+1)

where b is the row number, and i and i+1 represent the column number. This sort of operation is

easily vectorized for use by a SIMD engine.12 Furthermore, this layout exhibits uniformity–each

”column” has the same number of black or red cells, meaning the thread traversing the grid does

not need to know how many briquettes have passed since the beginning of the sweep.

Figure 5: The briquette used in our algorithm. Upon each relaxation, a row or column of cells
is lost from each edge. The first red cells computed occupy a square area that is 15 by 15 in our
example, as opposed to 16 by 16. We don’t lose a row of reds on the bottom or left edge, as the
cells on those edges are black cells. The first set of relaxed black cells is thus 14 by 14. Relaxed
black cells are shaded in black, and relaxed red cells are shaded red. Unrelaxed cells are gray or
white. The red cells are one iteration level further than the base gray cells, while the black cells
are two iteration levels further.
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Our diagonal briquette involves a 16 by 16 diagonal square of black cells as well as a 16 by

16 diagonal square of red cells. To minimize the amount of overlap required between threads, for

each sweep we perform only one red-black iteration, bringing the relaxed red cells up one level

of iteration, and bringing the relaxed black cells up two levels of iteration, as shown in Fig. 5.

This means that two rows are lost, so as one moves along the grid in a rotated-vertical direction,

a new briquette will begin every 14 cells, as shown in Fig. 6. Since the pair-sums are computed

vertically, all the pair-sums on the leading edge of the briquette can be reused to compute the

margin between the current briquette and the next briquette. Thus, every briquette after the first in

a sweep will involve relaxing 16 columns of black cells, as opposed to the 14 relaxed in the first

briquette. These black cells establish a trailing edge behind the very front of the briquette, as those

16 columns are offset from the 16 of the base state by 2 columns.

Figure 6: Vertically adjacent briquettes will overlap by 2 cells, as shown by the margins bounded
by blue lines. This overlap allows for a seamless relaxed grid without relying on message passing
between threads. The horizontally adjacent briquette, or the one to be computed after the current
one, is situated directly adjacent, with no overlap. The pair-sums and values from the leading edge
of the previous briquette are reused to compute the trailing edge of the new briquette, creating a
seamless row down which the thread moves.
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In order to assemble these rotated briquettes, one can either rotate the coordinate system each

time the briquette is assembled, or the entire grid can be rotated at the onset of the algorithm. The

latter saves quite a bit of computation time. However, this rotation would still be computationally

slow if done one cell at a time. The challenge then is to optimize it. To take advantage of the way

memory is read in units of cache lines,10 we rotate the grid in diagonal strips running from the

southeast corner to the northwest corner–southeast is to become the rotated south, and northwest

is to become the rotated north. To form each strip, 16 cells are pulled from memory–a horizontal

strip comprised of 8 red and 8 black cells. Each cell is then dumped into a diagonal in the rotated

strip. This is repeated with a new strip of 16 cells offset up one row and shifted one cell to the left,

as shown in Fig. 7.

Figure 7: In order to rotate the grid, we rotate individual strips by pulling 16-cell (in this case
8-cell–this is an 8-wide example to save space) horizontal strips from the original grid, and placing
them in the diagonalized strips. Once the rotation is complete, these strips make up the interior of
a somewhat larger, rotated grid.
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Once the grid has been rotated, threads can traverse it horizontally, relaxing the grid and con-

verging toward a solution. However, threads that are farther from the central latitude of the rotated

grid will traverse far less of the actual grid than will threads at central latitudes. This represents

an enormous waste of computing time and power. This can be avoided by rearranging the grid.

To do this, we slice the grid down the central latitude, such that we have a section of the grid that

includes an upright triangle comprising half the original grid, and another section that includes

an upside-down triangle comprising the other half. These triangles can be stacked on top of each

other, forming a parallelogram.10 To take matters even further, this parallelogram can be shifted

left, creating a left-justified edge. The right half of the new grid is not shifted uniformly in order to

create a right-justified edge. This leads to some rows having a gap roughly the size of a briquette

between the row from the top half and the complementary row from the bottom half, as shown in

Fig. 8.

Figure 8: To maximize the efficiency with which the rotated grid is computed, we split the rotated
original grid into two halves–a top half (blue) and a bottom half (red). We then lay the bottom
half neatly on top of the top half, forming a parallelogram. This parallelogram is then shifted left
to create a left-justified edge. Not every row from the lower half is shifted all the way over to
create a right-justified edge as well. This leaves briquette-sized gaps in many rows, represented
here by large black squares. Because most rows have been offset, the overlap regions have in many
cases been offset by a briquette’s width. This is indicated by the colored strips along the bottoms
and tops of each row. Once a briquette has been assembled, those colored strips should line up
perfectly. Some rows from the bottom half, due to the quirks of creating a right-justified edge as
well, do not have offset overlap regions. Whether or not this is the case is controlled by flags.
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Thus, we arrive at a rearranged grid where each thread has an approximately equal amount of

work to do, and the majority of the work corresponds to cells from the original grid. However,

because we have shifted several of the rows to create our justified edges, the overlaps have become

offset. For example, the left rows, corresponding to the top half of the rotated grid, have their

bottom 2 rows come from the row below. In each case, these 2 rows are shifted one briquette’s

worth to the right. For the rows on the right, in most cases the overlap is taken from the top, and

the top two rows have been shifted one briquette left. However, because the offset is not entirely

consistent in order to enforce a right-justified edge, some rows do not move with respect to their

neighbors, and the top two rows are not offset. Therefore, when doing the rotation, the algorithm

takes note of which rows will have this property, and sets a series of flags. This rearrangement is

performed once at the start of each grid–not at the start of each sweep or iteration, but rather each

time work is begun on a different grid than what was previously in use. This way, we are able to

create an environment in which the SIMD engine is able to vectorize most operations, although

we do assume an inevitable cost in efficiency of not being able to always use all 16 registers

in the SIMD engine. We avoid data unalignments, manage to accomplish a suitable amount of

work before needing to make another memory access, access the memory in a way that takes full

advantage of the cache lines to make sure we don’t make more memory calls than necessary, and

we avoid the inconsistencies and irregularities that pop up when traversing a checkerboard grid in

the traditional horizontal and vertical dimensions.

Results and Future Work

This particular implementation has not yet been timed. However, it is written to find a solution for

the gravitational potential in the least amount of work possible, and to do that work in the most

efficient way possible. The algorithm is able to produce gravity wells on the fine grid, as well as

compute the residual and relax the coarse grid corrections on several coarse grids. Our test runs

used units of Neptune masses and Megameters, with a fine grid cell width of 10 Megameters. We

18



ran the algorithm on a 256 by 256 grid, performing 8 iterations on the fine grid, 4 iterations on the

first coarse grid, and 2 iterations on the second coarse grid. This leads to a loss of 48 cells from

each edge, so if one were to solve a very large grid by breaking the grid into smaller, 256 by 256

squares and solving those squares,14 they would have to overlap their neighboring threads by 48

cells. The density distribution used was a simple gaussian. Figures 9, 10, 11, and 12 show the

results of these test runs.

Figure 9: The gravity well for a gaussian density distribution after 8 iterations.
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Figure 10: The first coarse-grid correction and the residual from the initial fine grid solution.

Figure 11: The second coarse-grid correction and the residual from the first coarse-grid correction.
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Figure 12: The gravity well for a gaussian density distribution after both correction factors have
been interpolated down and applied. Note the dimpling. It is believed that this is due to inter-
polation when the system has not completely converged, such that red and black are at different
depths of relaxation, leading to a very fine dimpled pattern. This is seized upon and extrapolated
by interpolation routines.

After the first interpolation, a sort of dimpling becomes apparent. With each interpolation, it

worsens, such that when the two coarse grids have been applied to the fine grid, it has a distinctly

dimpled texture, as seen in Fig. 12. This is most likely due to the fact that since, as part of the

red-black technique, the red and black cells leapfrog each other in terms of depth of iteration,

when the grid has not completely converged on a solution, and the red cells were the last to be

computed, the red cells will have a systematically higher or lower value than the black cells. This

will result in very high-frequency dimpling–every cell is a peak or a valley, as seen in Fig. 13. One

possible way to counteract this is to destroy the information about the dimpling. By integrating up

to a coarser grid, the dimpling is averaged out, and that information destroyed. If the grid is then

interpolated back down to the original fine resolution, then, assuming the potential is a smooth

function, the grid should take on the same approximate shape it had before the integration, but
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minus the dimpling. This will be an area of further research. Another goal for further research is to

adapt this algorithm for 3 spatial dimensions. Doing so would allow for very accurate simulations

of gravitating galaxies and protoplanetary disks.

Figure 13: This slice of the original gravity well, as seen in Fig. 9, shows that even at that point,
dimpling exists at a fine level. It is very clearly every other cell, in a checkerboard pattern, suggest-
ing that either the red cells or the black cells are systematically lower than the others. This could
potentially be solved by smoothing each grid after each final iteration.

Conclusion

The red-black technique, coupled with a multigrid acceleration, can be a very fast and very pow-

erful tool for solving Poisson-type equations on uniform grids. However, doing so optimally

and efficiently can pose major challenges. We explore an algorithm that takes advantage of the

naturally-rotated coordinate system of a checkerboard pattern to bypass many of the obstacles that

would otherwise impede such an algorithm. We further use a grid rearrangement to repack the

data into a dense format that maximizes the productivity of each thread, allowing this algorithm to
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run efficiently on parallel architectures. This is further aided by the relative independence of each

thread–no messages need to be passed, and the only requirement is that each thread’s neighbors

must have begun their previous iteration before the thread in question begins its next iteration.

However, without smoothing, this algorithm may not yield satisfactorily accurate results unless the

grid has been relaxed to a converged solution. Once the dimpling problem is solved, the algorithm

should be expanded to 3 spatial dimensions. Once the algorithm is fully functional and has been

shown to be satisfactorily fast in both 2 and 3 spatial dimensions, this algorithm could have wide

application beyond just gravity. As noted in the introduction, many other phenomena obey similar

equations, such as the scalar electric field potential, temperature, and other diffusive phenomena.
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